// Fill out your copyright notice in the Description page of Project Settings. #include "AdventureMap.h" #include "HexTile.h" #include "StarFog.h" #include "AdventurePlayerController.h" #include "Kismet/GameplayStatics.h" #include "Algo/Reverse.h" #include "Util/IndexPriorityQueue.h" #include // Sets default values AAdventureMap::AAdventureMap() { FHexVector NBs[] = { E, SSE, SSW, W, NNW, NNE }; UnitVectors.Append(NBs, UE_ARRAY_COUNT(NBs)); FHexVector DNBs[] = { N, ENE, ESE, S, WSW, WNW }; DiagonalUnitVectors.Append(DNBs, UE_ARRAY_COUNT(DNBs)); } // Called when the game starts or when spawned void AAdventureMap::BeginPlay() { Super::BeginPlay(); World = GetWorld(); if (IsValid(BaseTileClass)) { MakeGrid(); } for (auto& Tile : Grid) { AStarFog* Fog = World->SpawnActor(BaseFogClass, Tile->GetActorTransform()); Fog->CoveredHex = Tile; Tile->CoveringFog = Fog; } } // Called once on Begin Play void AAdventureMap::MakeGrid() { FVector NextHexAt = FVector(); float HexWidth = sqrt(3) * TileSize; int QOffset = 0; for (int r = 1; r <= GridSize; r++) { float XOffset = 0.f; if (r % 2 != 0) { if (r > 1) { QOffset--; } } else { XOffset = HexWidth / 2; } for (int q = 1; q <= GridSize; q++) { NextHexAt.X = XOffset + (HexWidth * q); NextHexAt.Y = TileSize * 1.5f * r; NextHexAt.Z = 0.f; FTransform SpawnTransform = FTransform(NextHexAt); AHexTile* Tile = World->SpawnActor(BaseTileClass, SpawnTransform); Grid.Add(Tile); Tile->Q = q - 1 + QOffset; Tile->R = r - 1; } } for (auto& tile : Grid) { tile->Index = GridIndex(tile->Q, tile->R); } bHexGridReady = true; } // Every Hex Tile's index within the Grid Array can be derived from its Axial Q and R coordinates int32 AAdventureMap::GridIndex(int32 qAxial, int32 rAxial) { /* * The Q axis is (i.e. columns are) oriented diagonally. * The Hex Grid has a rough square shape, hence the Q coordinates must be offset by -1 every other row. */ int32 column = qAxial + FMath::FloorToInt(rAxial / 2.); return (rAxial * GridSize) + column; } AHexTile* AAdventureMap::RandomHex() { //debug GEngine->AddOnScreenDebugMessage(-1, 5.f, FColor::Yellow, TEXT("Picking A Random Hex")); int32 RandHex = FMath::RandRange(0, GridSize*GridSize-1); return Grid[RandHex]; } FHexVector AAdventureMap::AxialRound(float qf, float rf) { float sf = -qf - rf; int32 q = round(qf); int32 r = round(rf); int32 s = round(sf); float q_diff = abs(q - qf); float r_diff = abs(r - rf); float s_diff = abs(s - sf); if (q_diff > r_diff && q_diff > s_diff) { q = -r - s; } else if (r_diff > s_diff) { r = -q - s; } else { s = -q - r; } return FHexVector(q, r); } float AAdventureMap::Lerp(int32 a, int32 b, float t) { return float(a + (b - a) * t); } TArray AAdventureMap::Neighbors(AHexTile* OfHex, bool bFreeOnly = false) { TArray Results; for (FHexVector NeighborVector : UnitVectors) { int32 Index = GridIndex(OfHex->Q + NeighborVector.Q, OfHex->R + NeighborVector.R); if (Grid.IsValidIndex(Index)) { AHexTile* Hex = Grid[Index]; if (bFreeOnly && !Hex->bFree) { continue; } if (Hex->Distance(OfHex) == 1) { Results.Add(Hex); } } } return Results; } TArray AAdventureMap::FreeDiagonals(AHexTile* OfHex) { TArray Results; for (auto& V : DiagonalUnitVectors) { int32 I = GridIndex(OfHex->Q + V.Q, OfHex->R + V.R); if (!Grid.IsValidIndex(I)) { continue; } else { bool bReachable = true; for (AHexTile* PotentialBlock : Neighbors(OfHex)) { if (PotentialBlock->Distance(Grid[I]) != 1) { continue; } if (!PotentialBlock->bFree) { bReachable = false; break; } } if (bReachable) { Results.Add(Grid[I]); } } } return Results; } TSet AAdventureMap::BreadthFirstSearch(AHexTile* Start, int32 Radius) { TSet Results; TArray Frontier; TSet Processed; Results.Add(Start); Frontier.Add(Start); while (!Frontier.IsEmpty()) { AHexTile* Current = Frontier[0]; Processed.Add(Current); Frontier.Remove(Current); for (AHexTile* Neighbor : Neighbors(Current)) { if (Neighbor->Distance(Current) > 1) { continue; } if (Processed.Contains(Neighbor)) { continue; } if (Neighbor->Distance(Start) > Radius) { continue; } Frontier.Add(Neighbor); Results.Add(Neighbor); } } return Results; } /* // Faulty implementation which uses an actual PriorityQueue TArray AAdventureMap::FindPathAStar(AHexTile* Start, AHexTile* Goal, bool bDiags) { TSet Processed; TSet ToSearch; TPriorityQueue Frontier; Start->GCost = 0; Frontier.Push(Start, .0f); ToSearch.Add(Start); while (!Frontier.IsEmpty()) { AHexTile* Current = Frontier.Pop(); ToSearch.Remove(Current); if (Current == Goal) { break; } Processed.Add(Current); for (AHexTile* Neighbor : Neighbors(Current, true)) { if (Processed.Contains(Neighbor)) { continue; } bool bInToSearch = ToSearch.Contains(Start); int32 NewGCost = Current->GCost + Neighbor->MoveCost; if (!bInToSearch || NewGCost < Neighbor->GCost) { Neighbor->GCost = NewGCost; Neighbor->CameFrom = Current; if (!bInToSearch) { Neighbor->HCost = Neighbor->Distance(Goal); Frontier.Push(Neighbor, NewGCost + Neighbor->HCost); ToSearch.Add(Neighbor); } } } } TArray Path; if (!IsValid(Goal->CameFrom)) { return Path; } AHexTile* iPathNode = Goal; while (iPathNode != Start) { Path.Emplace(iPathNode); iPathNode = iPathNode->CameFrom; } Algo::Reverse(Path); return Path; } */ TArray AAdventureMap::FindPathAStar(AHexTile * Start, AHexTile * Goal, bool bDiags) { TArray Frontier; TSet Processed; Frontier.Add(Start); while (!Frontier.IsEmpty()) { // Pop AHexTile* Candidate = Frontier[0]; // Exit if (Candidate == Goal) { break; } // Find contender with an even lower F-cost for (AHexTile* Other : Frontier) { if (Other->FCost < Candidate->FCost || Other->FCost == Candidate->FCost && Other->HCost < Candidate->HCost) { Candidate = Other; } } Frontier.Remove(Candidate); Processed.Add(Candidate); // Expand frontier, make connections when appropriate for (AHexTile* Neighbor : Neighbors(Candidate, true)) { if (Processed.Contains(Neighbor)) { continue; } bool bInFrontier = Frontier.Contains(Neighbor); int32 NewGCost = Candidate->GCost + Neighbor->MoveCost; if (NewGCost < Neighbor->GCost || !bInFrontier) { Neighbor->GCost = NewGCost; Neighbor->HCost = Neighbor->Distance(Goal); Neighbor->FCost = Neighbor->GCost + Neighbor->HCost; Neighbor->CameFrom = Candidate; // chain if (!bInFrontier) { Frontier.Add(Neighbor); } } } } // Build and return path TArray Path; AHexTile* iPathNode = Goal; while (iPathNode != Start) { if (!IsValid(iPathNode->CameFrom) || !iPathNode->bFree) { Path.Empty(); return Path; } Path.Emplace(iPathNode); iPathNode = iPathNode->CameFrom; } Algo::Reverse(Path); return Path; } // very bro-sciency approach to pathfinding for diagonal Hex-movement // DO NOT USE TArray AAdventureMap::ShortcutAStar(TArray Path) { TArray Shortcut; int32 Len = Path.Num(); TArray WorkingSegment; AHexTile* CurrentHex = PCRef->CurrentHex; WorkingSegment.Add(CurrentHex); int32 h = 0; // create segments for each bend FHexVector PrevDir = FHexVector(Path[0], CurrentHex); FHexVector DirASave = PrevDir; FHexVector DirA; int32 HexesBeforeBend = 1; for (h; h < Len-1; h++) { WorkingSegment.Add(Path[h]); DirA = FHexVector(Path[h+1], Path[h]); if (DirA != PrevDir) { break; } // save Path[h] into Array of Bends HexesBeforeBend++; PrevDir = DirA; } PrevDir = DirA; FHexVector DirB; int32 HexesAfterBend = 0; for (h; h < Len - 1; h++) { WorkingSegment.Add(Path[h+1]); DirB = FHexVector(Path[h+1], Path[h]); if (DirB != PrevDir) { break; } HexesAfterBend++; PrevDir = DirB; } if (HexesAfterBend == 0) { return Path; } FHexVector UnitDiag = UnitDiagFromUnitNB(DirASave, DirB); AHexTile* Milestone = WorkingSegment.Last(); int32 NumDiags = (HexesBeforeBend >= HexesAfterBend) ? HexesAfterBend : HexesBeforeBend; int32 NumTries = (HexesBeforeBend >= HexesAfterBend) ? HexesBeforeBend : HexesAfterBend; bool bDiagAdded = false; for (int i = 0; i < NumTries; i++) { if (NumDiags == 0) { Shortcut.Append(FindPathAStar(CurrentHex, Milestone, false)); break; } if (DiagIsReachable(CurrentHex, UnitDiag)) { int32 CanIndex = GridIndex(CurrentHex->Q + UnitDiag.Q, CurrentHex->R + UnitDiag.R); if (Grid.IsValidIndex(CanIndex)) { AHexTile* Current = Grid[CanIndex]; if (Current->bFree) { Shortcut.Add(Current); bDiagAdded = true; CurrentHex = Current; NumDiags--; continue; } } } if (!bDiagAdded && !DiagIsReachable(CurrentHex, UnitDiag)) { Shortcut.Add(CurrentHex); CurrentHex = WorkingSegment[i + 1]; NumDiags--; continue; } if (bDiagAdded && !DiagIsReachable(CurrentHex, UnitDiag)) { Shortcut.Append(FindPathAStar(CurrentHex, Milestone, true)); break; } } if (Milestone != Path.Last()) { Shortcut.Append(FindPathAStar(Milestone, Path.Last(), true)); } UE_LOG(LogTemp, Warning, TEXT("Hexes before bend: %d"), HexesBeforeBend); UE_LOG(LogTemp, Warning, TEXT("Hexes after bend: %d"), HexesAfterBend); return Shortcut; } FHexVector AAdventureMap::UnitDiagFromUnitNB(FHexVector InVecA, FHexVector InVecB) { if (InVecA == NNW && InVecB == NNE||InVecB == NNW && InVecA == NNE) { return N; } if (InVecA == NNE && InVecB == E ||InVecB == NNE && InVecA == E) { return ENE; } if (InVecA == E && InVecB == SSE||InVecB == E && InVecA == SSE) { return ESE; } if (InVecA == SSE && InVecB == SSW||InVecB == SSE && InVecA == SSW) { return S; } if (InVecA == SSW && InVecB == W ||InVecB == SSW && InVecA == W) { return WSW; } if (InVecA == W && InVecB == NNW||InVecB == W && InVecA == NNW) { return WNW; } return FHexVector(); } bool AAdventureMap::DiagIsReachable(AHexTile* InStart, FHexVector InDiagUnitVec) { FHexVector BlockA; FHexVector BlockB; if (InDiagUnitVec == N) { BlockA = NNW, BlockB = NNE; } if (InDiagUnitVec == ENE) { BlockA = NNE, BlockB = E; } if (InDiagUnitVec == ESE) { BlockA = E, BlockB = SSE; } if (InDiagUnitVec == S) { BlockA = SSE, BlockB = SSW; } if (InDiagUnitVec == WSW) { BlockA = SSW, BlockB = W; } if (InDiagUnitVec == WNW) { BlockA = W, BlockB = NNW; } int32 IndexA = GridIndex(InStart->Q + BlockA.Q, InStart->R + BlockA.R); int32 IndexB = GridIndex(InStart->Q + BlockB.Q, InStart->R + BlockB.R); if (!Grid.IsValidIndex(IndexA) || !Grid.IsValidIndex(IndexB)) { return false; } AHexTile* HexA = Grid[IndexA]; AHexTile* HexB = Grid[IndexB]; return (HexA->bFree && HexB->bFree); }