// Fill out your copyright notice in the Description page of Project Settings. #include "AdventureMap.h" #include "HexTile.h" #include "AdventurePlayerController.h" #include "Kismet/GameplayStatics.h" #include "Algo/Reverse.h" // Sets default values AAdventureMap::AAdventureMap() { FHexVector NBs[] = { NNE, E, SSE, SSW, W, NNW }; NeighborUnitVectors.Append(NBs, UE_ARRAY_COUNT(NBs)); FHexVector DNBs[] = { N, ENE, ESE, S, WSW, WNW }; DiagonalUnitVectors.Append(DNBs, UE_ARRAY_COUNT(DNBs)); } // Called when the game starts or when spawned void AAdventureMap::BeginPlay() { Super::BeginPlay(); World = GetWorld(); if (IsValid(BaseTileClass)) { MakeGrid(); } } // Called once on Begin Play void AAdventureMap::MakeGrid() { FVector NextHexAt = FVector(); float HexWidth = sqrt(3) * TileSize; int QOffset = 0; for (int r = 1; r <= GridSize; r++) { float XOffset = 0.f; if (r % 2 != 0) { if (r > 1) { QOffset--; } } else { XOffset = HexWidth / 2; } for (int q = 1; q <= GridSize; q++) { NextHexAt.X = XOffset + (HexWidth * q); NextHexAt.Y = TileSize * 1.5f * r; NextHexAt.Z = 0.f; FTransform SpawnTransform = FTransform(NextHexAt); AHexTile* Tile = World->SpawnActor(BaseTileClass, SpawnTransform); Grid.Add(Tile); Tile->Q = q - 1 + QOffset; Tile->R = r - 1; } } for (auto& tile : Grid) { tile->Index = GridIndex(tile->Q, tile->R); } bHexGridReady = true; } // Every Hex Tile's index within the Grid Array can be derived from its Axial Q and R coordinates int32 AAdventureMap::GridIndex(int32 qAxial, int32 rAxial) { /* * The Q axis is (i.e. columns are) oriented diagonally. * The Hex Grid has a rough square shape, hence the Q coordinates must be offset by -1 every other row. */ int32 column = qAxial + FMath::FloorToInt(rAxial / 2); return (rAxial * GridSize) + column; } AHexTile* AAdventureMap::RandomHex() { int32 RandHex = FMath::RandRange(0, GridSize*GridSize-1); return Grid[RandHex]; } TArray AAdventureMap::Neighbors(AHexTile* OfHex, bool bFreeOnly = false) { TArray Results; for (auto& V : NeighborUnitVectors) { int32 I = GridIndex(OfHex->Q + V.Q, OfHex->R + V.R); if (Grid.IsValidIndex(I)) { AHexTile* H = Grid[I]; if (bFreeOnly && !H->bFree) { continue; } if (H->Distance(OfHex) == 1) { Results.Add(H); } } } return Results; } TArray AAdventureMap::FreeDiagonals(AHexTile* OfHex) { TArray Results; for (auto& V : DiagonalUnitVectors) { int32 I = GridIndex(OfHex->Q + V.Q, OfHex->R + V.R); if (!Grid.IsValidIndex(I)) { continue; } else { bool bReachable = true; for (AHexTile* PotentialBlock : Neighbors(OfHex)) { if (PotentialBlock->Distance(Grid[I]) != 1) { continue; } if (!PotentialBlock->bFree) { bReachable = false; break; } } if (bReachable) { Results.Add(Grid[I]); } } } return Results; } TSet AAdventureMap::BreadthFirstSearch(AHexTile* Start, int32 Radius) { TSet Results; TArray ToExamine; TSet Processed; Results.Add(Start); ToExamine.Add(Start); while (!ToExamine.IsEmpty()) { AHexTile* Candidate = ToExamine[0]; Processed.Add(Candidate); ToExamine.Remove(Candidate); for (AHexTile* Neighbor : Neighbors(Candidate)) { if (Neighbor->Distance(Candidate) > 1) { continue; } if (Processed.Contains(Neighbor)) { continue; } if (Neighbor->Distance(Start) > Radius) { continue; } ToExamine.Add(Neighbor); Results.Add(Neighbor); } } return Results; } TArray AAdventureMap::FindPathAStar(AHexTile* Start, AHexTile* Goal, bool bDiags) { TArray ToExamine; TSet Processed; ToExamine.Add(Start); while (!ToExamine.IsEmpty()) { AHexTile* Candidate = ToExamine[0]; ToExamine.Remove(Candidate); // try for Hex with lower estimatet (F)cost for (AHexTile* t : ToExamine) { t->FCost = t->GCost + t->HCost; if (t->FCost < Candidate->FCost || t->FCost == Candidate->FCost && t->HCost < Candidate->HCost) { Candidate = t; } } Processed.Add(Candidate); // exit if (Candidate == Goal) { break; } // expand frontier & adjust path data for (AHexTile* Neighbor : Neighbors(Candidate, true)) { if (!Neighbor->bFree) { continue; } if (Processed.Contains(Neighbor)) { continue; } bool bInToExamine = ToExamine.Contains(Neighbor); float NewGCost = Candidate->GCost + Neighbor->MoveCost; if (NewGCost < Neighbor->GCost || !bInToExamine) { Neighbor->GCost = NewGCost; Neighbor->CameFrom = Candidate; // chain Neighbor->bDiagMove = false; if (!bInToExamine) { Neighbor->HCost = Neighbor->Distance(Goal); ToExamine.Add(Neighbor); } } } /* if (bDiags) { for (AHexTile* Diag : FreeDiagonals(Candidate)) { if (!Diag->bFree) { continue; } if (Processed.Contains(Diag)) { continue; } bool bInToExamine = ToExamine.Contains(Diag); float NewGCost = Candidate->GCost + Diag->MoveCost; if (NewGCost < Diag->GCost || !bInToExamine) { Diag->GCost = NewGCost; Diag->CameFrom = Candidate; // chain Diag->bDiagMove = true; if (!bInToExamine) { Diag->HCost = Diag->Distance(Goal); ToExamine.Add(Diag); } } } }*/ } TArray Path; if (!IsValid(Goal->CameFrom)) { return Path; } AHexTile* iPathNode = Goal; while (iPathNode != Start) { Path.Emplace(iPathNode); iPathNode = iPathNode->CameFrom; } Algo::Reverse(Path); if (bDiags) { Path = ShortcutAStar(Path); } return Path; } TArray AAdventureMap::ShortcutAStar(TArray Path) { TArray Shortcut; int32 Len = Path.Num(); AHexTile* Milestone; int32 BeforeBend; int32 AfterBend; int32 HexIter = 1; FHexVector pDir; FHexVector DirA; FHexVector DirB; AHexTile* Current = Path[0]; // beginning of curve (starts at Start) while (Milestone != Path[Len - 1]) { // find Milestone (i.e. end of first curve) & determine curve data BeforeBend = 1; for (HexIter; HexIter < Len; HexIter++) { pDir = FHexVector(Path[HexIter], Path[HexIter - 1]); DirA = FHexVector(Path[HexIter + 1], Path[HexIter]); if (DirA == pDir) { BeforeBend++; } else { break; } } AfterBend = 1; for (HexIter; HexIter < Len; HexIter++) { pDir = FHexVector(Path[HexIter], Path[HexIter - 1]); DirB = FHexVector(Path[HexIter + 1], Path[HexIter]); if (DirB == pDir) { AfterBend++; } else { break; } } FHexVector Diag = UnitDiagFromUnitNB(DirA, DirB); // cardinal direction for potential shortcut TArray WorkingSegment; // current curve for (int32 i = Path.Find(Current); i < HexIter; i++) { WorkingSegment.Add(Path[i]); } Milestone = Path[HexIter]; // end of curve int32 ShoCutLen; int32 NumDiags; // max number of tries to take a Diagonal if (BeforeBend >= AfterBend) { ShoCutLen = BeforeBend; NumDiags = AfterBend; } if (BeforeBend < AfterBend) { ShoCutLen = AfterBend; NumDiags = BeforeBend; } TArray NewSegment; // link from Current to Milestone with diagonals for (int32 i = 0; i < NumDiags; i++) { AHexTile* NewCandidate = Grid[GridIndex(Current->Q + Diag.Q, Current->R + Diag.R)]; if (i==0 && !DiagIsReachable(Current, Diag) || i==0 && !NewCandidate->bFree) { Current = WorkingSegment[i + 1]; i++; continue; } NewSegment.Add(NewCandidate); } // connect the rest via A* probably, think about checking whether the result is really shorter int32 CIndex = WorkingSegment.Find(Current); while (Current != Milestone) { Current = WorkingSegment[CIndex]; NewSegment.Add(Current); CIndex++; } } // Construct shortcut return Shortcut; } FHexVector AAdventureMap::UnitDiagFromUnitNB(FHexVector InVecA, FHexVector InVecB) { if (InVecA == NNW && InVecB == NNE||InVecB == NNW && InVecA == NNE) { return N; } if (InVecA == NNE && InVecB == E ||InVecB == NNE && InVecA == E) { return ENE; } if (InVecA == E && InVecB == SSE||InVecB == E && InVecA == SSE) { return ESE; } if (InVecA == SSE && InVecB == SSW||InVecB == SSE && InVecA == SSW) { return S; } if (InVecA == SSW && InVecB == W ||InVecB == SSW && InVecA == W) { return WSW; } if (InVecA == W && InVecB == NNW||InVecB == W && InVecA == NNW) { return WNW; } return FHexVector(); } bool AAdventureMap::DiagIsReachable(AHexTile* InStart, FHexVector InDiagUnitVec) { FHexVector BlockA; FHexVector BlockB; if (InDiagUnitVec == N) { BlockA = NNW, BlockB = NNE; } if (InDiagUnitVec == ENE) { BlockA = NNE, BlockB = E; } if (InDiagUnitVec == ESE) { BlockA = E, BlockB = SSE; } if (InDiagUnitVec == S) { BlockA = SSE, BlockB = SSW; } if (InDiagUnitVec == WSW) { BlockA = SSW, BlockB = W; } if (InDiagUnitVec == WNW) { BlockA = W, BlockB = NNW; } AHexTile* HexA = Grid[GridIndex(InStart->Q + BlockA.Q, InStart->R + BlockA.R)]; AHexTile* HexB = Grid[GridIndex(InStart->Q + BlockB.Q, InStart->R + BlockB.R)]; return (HexA->bFree && HexB->bFree); }