// Fill out your copyright notice in the Description page of Project Settings. #include "AdventureMap.h" #include "HexTile.h" #include "AdventureCameraPawn.h" #include "AdventureCharacter.h" #include "Kismet/GameplayStatics.h" #include "Algo/Reverse.h" // Sets default values AAdventureMap::AAdventureMap() { } // Called when the game starts or when spawned void AAdventureMap::BeginPlay() { Super::BeginPlay(); World = GetWorld(); if (IsValid(BaseTileClass)) { MakeGrid(); } } // Called once on Begin Play void AAdventureMap::MakeGrid() { FVector NextHexAt = FVector(); float HexWidth = sqrt(3) * TileSize; int QOffset = 0; for (int r = 1; r <= GridSize; r++) { float XOffset = 0.f; if (r % 2 != 0) { if (r > 1) { QOffset--; } } else { XOffset = HexWidth / 2; } for (int q = 1; q <= GridSize; q++) { NextHexAt.X = XOffset + (HexWidth * q); NextHexAt.Y = TileSize * 1.5f * r; NextHexAt.Z = 0.f; FTransform SpawnTransform = FTransform(NextHexAt); AHexTile* Tile = World->SpawnActor(BaseTileClass, SpawnTransform); Tile->Q = q - 1 + QOffset; Tile->R = r - 1; Grid.Add(Tile); } } for (auto& tile : Grid) { tile->Index = GridIndex(tile->Q, tile->R); } bHexGridReady = true; } // Every Hex Tile's index within the Grid Array can be derived from its Q and R coordinates int32 AAdventureMap::GridIndex(int32 qAxial, int32 rAxial) { /* * The Q axis is (i.e. columns are) oriented diagonally. * The Hex Grid has a rough square shape, hence the Q coordinates must be offset by -1 every other row. */ int32 column = qAxial + FMath::FloorToInt(rAxial / 2); return (rAxial * GridSize) + column; } AHexTile* AAdventureMap::RandomHex() { int32 RandHex = FMath::RandRange(0, GridSize*GridSize-1); return Grid[RandHex]; } TArray AAdventureMap::Neighbors(AHexTile* OfHex) { TArray Neighbors; int32 Arr[] = { GridIndex(OfHex->Q+1, OfHex->R), GridIndex(OfHex->Q+1, OfHex->R-1), GridIndex(OfHex->Q, OfHex->R-1), GridIndex(OfHex->Q-1, OfHex->R), GridIndex(OfHex->Q-1, OfHex->R+1), GridIndex(OfHex->Q, OfHex->R+1) }; TArray Indeces; Indeces.Append(Arr, UE_ARRAY_COUNT(Arr)); Neighbors.Add(RandomHex()); // pathetic but necessary for (auto& I : Indeces) { if (Grid.IsValidIndex(I) && OfHex->Distance(Grid[I]) == 1) { Neighbors.Add(Grid[I]); } } return Neighbors; } TArray AAdventureMap::AStar(AHexTile* Start, AHexTile* Goal) { TArray ToExamine; TArray Processed; ToExamine.Add(Start); while (!ToExamine.IsEmpty()) { AHexTile* Candidate = ToExamine[0]; // estimate closest known Hex to Goal for (auto& t : ToExamine) { int32 FCost = t->GCost + t->HCost; if (t->FCost < Candidate->FCost || t->FCost == Candidate->FCost && t->HCost < Candidate->HCost) { Candidate = t; } } Processed.Add(Candidate); ToExamine.Remove(Candidate); // exit if (Candidate == Goal) { break; } // expand frontier & adjust path data for (AHexTile* Neighbor : Neighbors(Candidate)) { if (Neighbor->Distance(Candidate) > 1) { continue; } if (!(Neighbor->bFree)) { continue; } if (Processed.Contains(Neighbor)) { continue; } bool bInToExamine = ToExamine.Contains(Neighbor); int32 NewGCost = Candidate->GCost + Neighbor->MoveCost; if (NewGCost < Neighbor->GCost || !bInToExamine) { Neighbor->GCost = NewGCost; Neighbor->CameFrom = Candidate; // chain if (!bInToExamine) { Neighbor->HCost = Neighbor->Distance(Goal); ToExamine.Add(Neighbor); } } } } return LinkPath(Start, Goal); } TArray AAdventureMap::LinkPath(AHexTile* Start, AHexTile* Goal) { TArray Path; if (!IsValid(Goal->CameFrom)) { return Path; } AHexTile* iPathNode = Goal; while (iPathNode != Start) { Path.Emplace(iPathNode); iPathNode = iPathNode->CameFrom; } Algo::Reverse(Path); return Path; }