// Fill out your copyright notice in the Description page of Project Settings. #include "AdventureMap.h" #include "HexTile.h" #include "AdventurePlayerController.h" #include "Kismet/GameplayStatics.h" #include "Algo/Reverse.h" // Sets default values AAdventureMap::AAdventureMap() { FHexVector NBs[] = { NNE, E, SSE, SSW, W, NNW }; NeighborUnitVectors.Append(NBs, UE_ARRAY_COUNT(NBs)); FHexVector DNBs[] = { N, ENE, ESE, S, WSW, WNW }; DiagonalUnitVectors.Append(DNBs, UE_ARRAY_COUNT(DNBs)); } // Called when the game starts or when spawned void AAdventureMap::BeginPlay() { Super::BeginPlay(); World = GetWorld(); if (IsValid(BaseTileClass)) { MakeGrid(); } } // Called once on Begin Play void AAdventureMap::MakeGrid() { FVector NextHexAt = FVector(); float HexWidth = sqrt(3) * TileSize; int QOffset = 0; for (int r = 1; r <= GridSize; r++) { float XOffset = 0.f; if (r % 2 != 0) { if (r > 1) { QOffset--; } } else { XOffset = HexWidth / 2; } for (int q = 1; q <= GridSize; q++) { NextHexAt.X = XOffset + (HexWidth * q); NextHexAt.Y = TileSize * 1.5f * r; NextHexAt.Z = 0.f; FTransform SpawnTransform = FTransform(NextHexAt); AHexTile* Tile = World->SpawnActor(BaseTileClass, SpawnTransform); Grid.Add(Tile); Tile->Q = q - 1 + QOffset; Tile->R = r - 1; } } for (auto& tile : Grid) { tile->Index = GridIndex(tile->Q, tile->R); } bHexGridReady = true; } // Every Hex Tile's index within the Grid Array can be derived from its Axial Q and R coordinates int32 AAdventureMap::GridIndex(int32 qAxial, int32 rAxial) { /* * The Q axis is (i.e. columns are) oriented diagonally. * The Hex Grid has a rough square shape, hence the Q coordinates must be offset by -1 every other row. */ int32 column = qAxial + FMath::FloorToInt(rAxial / 2); return (rAxial * GridSize) + column; } AHexTile* AAdventureMap::RandomHex() { int32 RandHex = FMath::RandRange(0, GridSize*GridSize-1); return Grid[RandHex]; } TArray AAdventureMap::Neighbors(AHexTile* OfHex, bool bFreeOnly = false) { TArray Results; for (auto& V : NeighborUnitVectors) { int32 I = GridIndex(OfHex->Q + V.Q, OfHex->R + V.R); if (Grid.IsValidIndex(I)) { AHexTile* H = Grid[I]; if (bFreeOnly && !H->bFree) { continue; } if (H->Distance(OfHex) == 1) { Results.Add(H); } } } return Results; } TArray AAdventureMap::FreeDiagonals(AHexTile* OfHex) { TArray Results; for (auto& V : DiagonalUnitVectors) { int32 I = GridIndex(OfHex->Q + V.Q, OfHex->R + V.R); if (!Grid.IsValidIndex(I)) { continue; } else { bool bReachable = true; for (AHexTile* PotentialBlock : Neighbors(OfHex)) { if (PotentialBlock->Distance(Grid[I]) != 1) { continue; } if (!PotentialBlock->bFree) { bReachable = false; break; } } if (bReachable) { Results.Add(Grid[I]); } } } return Results; } TSet AAdventureMap::BreadthFirstSearch(AHexTile* Start, int32 Radius) { TSet Results; TArray ToExamine; TSet Processed; Results.Add(Start); ToExamine.Add(Start); while (!ToExamine.IsEmpty()) { AHexTile* Candidate = ToExamine[0]; Processed.Add(Candidate); ToExamine.Remove(Candidate); for (AHexTile* Neighbor : Neighbors(Candidate)) { if (Neighbor->Distance(Candidate) > 1) { continue; } if (Processed.Contains(Neighbor)) { continue; } if (Neighbor->Distance(Start) > Radius) { continue; } ToExamine.Add(Neighbor); Results.Add(Neighbor); } } return Results; } TArray AAdventureMap::FindPathAStar(AHexTile* Start, AHexTile* Goal, bool bDiags) { TArray ToExamine; TSet Processed; ToExamine.Add(Start); while (!ToExamine.IsEmpty()) { AHexTile* Candidate = ToExamine[0]; ToExamine.Remove(Candidate); // try for Hex with lower estimatet (F)cost for (AHexTile* t : ToExamine) { t->FCost = t->GCost + t->HCost; if (t->FCost < Candidate->FCost || t->FCost == Candidate->FCost && t->HCost < Candidate->HCost) { Candidate = t; } } Processed.Add(Candidate); // exit if (Candidate == Goal) { break; } // expand frontier & adjust path data for (AHexTile* Neighbor : Neighbors(Candidate, true)) { if (Neighbor->Distance(Candidate) > 1) { continue; } if (!Neighbor->bFree) { continue; } if (Processed.Contains(Neighbor)) { continue; } bool bInToExamine = ToExamine.Contains(Neighbor); float NewGCost = Candidate->GCost + Neighbor->MoveCost * 10.f; if (NewGCost < Neighbor->GCost || !bInToExamine) { Neighbor->GCost = NewGCost; Neighbor->CameFrom = Candidate; // chain if (!bInToExamine) { Neighbor->HCost = Neighbor->Distance(Goal) * 10.f; ToExamine.Add(Neighbor); } } } if (bDiags) { for (AHexTile* Diag : FreeDiagonals(Candidate)) { if (Diag->Distance(Candidate) > 2) { continue; } if (!Diag->bFree) { continue; } if (Processed.Contains(Diag)) { continue; } bool bInToExamine = ToExamine.Contains(Diag); float NewGCost = Candidate->GCost + 1 + Diag->MoveCost * 10.f; if (NewGCost < Diag->GCost || !bInToExamine) { Diag->GCost = NewGCost; Diag->CameFrom = Candidate; // chain if (!bInToExamine) { Diag->HCost = Diag->Distance(Goal) * 10.f; // not accounting for diagonals ToExamine.Add(Diag); } } } } } TArray Path; if (!IsValid(Goal->CameFrom)) { return Path; } AHexTile* iPathNode = Goal; while (iPathNode != Start) { Path.Emplace(iPathNode); iPathNode = iPathNode->CameFrom; } Algo::Reverse(Path); return Path; }