unreal/AdventureMap.cpp

386 lines
11 KiB
C++

// Fill out your copyright notice in the Description page of Project Settings.
#include "AdventureMap.h"
#include "HexTile.h"
#include "StarFog.h"
#include "AdventurePlayerController.h"
#include "Kismet/GameplayStatics.h"
#include "Algo/Reverse.h"
#include "Util/IndexPriorityQueue.h"
#include <tgmath.h>
// Sets default values
AAdventureMap::AAdventureMap()
{
FHexVector NBs[] = { E, SSE, SSW, W, NNW, NNE };
UnitVectors.Append(NBs, UE_ARRAY_COUNT(NBs));
FHexVector DNBs[] = { N, ENE, ESE, S, WSW, WNW };
DiagonalUnitVectors.Append(DNBs, UE_ARRAY_COUNT(DNBs));
}
// Called when the game starts or when spawned
void AAdventureMap::BeginPlay()
{
Super::BeginPlay();
World = GetWorld();
if (IsValid(BaseTileClass)) {
MakeGrid();
}
for (auto& Tile : Grid) {
AStarFog* Fog = World->SpawnActor<AStarFog>(BaseFogClass, Tile->GetActorTransform());
Fog->CoveredHex = Tile;
Tile->CoveringFog = Fog;
}
}
// Called once on Begin Play
void AAdventureMap::MakeGrid()
{
FVector NextHexAt = FVector();
float HexWidth = sqrt(3) * TileSize;
int QOffset = 0;
for (int r = 1; r <= GridSize; r++) {
float XOffset = 0.f;
if (r % 2 != 0) { if (r > 1) { QOffset--; } }
else { XOffset = HexWidth / 2; }
for (int q = 1; q <= GridSize; q++) {
NextHexAt.X = XOffset + (HexWidth * q);
NextHexAt.Y = TileSize * 1.5f * r;
NextHexAt.Z = 0.f;
FTransform SpawnTransform = FTransform(NextHexAt);
AHexTile* Tile = World->SpawnActor<AHexTile>(BaseTileClass, SpawnTransform);
Grid.Add(Tile);
Tile->Q = q - 1 + QOffset;
Tile->R = r - 1;
}
}
for (auto& tile : Grid) {
tile->Index = GridIndex(tile->Q, tile->R);
}
bHexGridReady = true;
}
// Every Hex Tile's index within the Grid Array can be derived from its Axial Q and R coordinates
int32 AAdventureMap::GridIndex(int32 qAxial, int32 rAxial)
{
/*
* The Q axis is (i.e. columns are) oriented diagonally.
* The Hex Grid has a rough square shape, hence the Q coordinates must be offset by -1 every other row.
*/
int32 column = qAxial + FMath::FloorToInt(rAxial / 2.);
return (rAxial * GridSize) + column;
}
AHexTile* AAdventureMap::RandomHex()
{
//debug
GEngine->AddOnScreenDebugMessage(-1, 5.f, FColor::Yellow, TEXT("Picking A Random Hex"));
int32 RandHex = FMath::RandRange(0, GridSize*GridSize-1);
return Grid[RandHex];
}
FHexVector AAdventureMap::AxialRound(float qf, float rf)
{
float sf = -qf - rf;
int32 q = round(qf);
int32 r = round(rf);
int32 s = round(sf);
float q_diff = abs(q - qf);
float r_diff = abs(r - rf);
float s_diff = abs(s - sf);
if (q_diff > r_diff && q_diff > s_diff)
{ q = -r - s; }
else if (r_diff > s_diff)
{ r = -q - s; }
else
{ s = -q - r; }
return FHexVector(q, r);
}
float AAdventureMap::Lerp(int32 a, int32 b, float t)
{
return float(a + (b - a) * t);
}
TArray<AHexTile*> AAdventureMap::Neighbors(AHexTile* OfHex, bool bFreeOnly = false)
{
TArray<AHexTile*> Results;
for (FHexVector NeighborVector : UnitVectors) {
int32 Index = GridIndex(OfHex->Q + NeighborVector.Q, OfHex->R + NeighborVector.R);
if (Grid.IsValidIndex(Index)) {
AHexTile* Hex = Grid[Index];
if (bFreeOnly && !Hex->bFree) { continue; }
if (Hex->Distance(OfHex) == 1) { Results.Add(Hex); }
}
}
return Results;
}
TArray<AHexTile*> AAdventureMap::FreeDiagonals(AHexTile* OfHex)
{
TArray<AHexTile*> Results;
for (auto& V : DiagonalUnitVectors) {
int32 I = GridIndex(OfHex->Q + V.Q, OfHex->R + V.R);
if (!Grid.IsValidIndex(I)) { continue; }
else {
bool bReachable = true;
for (AHexTile* PotentialBlock : Neighbors(OfHex)) {
if (PotentialBlock->Distance(Grid[I]) != 1) { continue; }
if (!PotentialBlock->bFree) {
bReachable = false;
break;
}
}
if (bReachable) { Results.Add(Grid[I]); }
}
}
return Results;
}
TSet<AHexTile*> AAdventureMap::BreadthFirstSearch(AHexTile* Start, int32 Radius)
{
TSet<AHexTile*> Results;
TArray<AHexTile*> Frontier;
TSet<AHexTile*> Processed;
Results.Add(Start);
Frontier.Add(Start);
while (!Frontier.IsEmpty()) {
AHexTile* Current = Frontier[0];
Processed.Add(Current);
Frontier.Remove(Current);
for (AHexTile* Neighbor : Neighbors(Current)) {
if (Neighbor->Distance(Current) > 1) { continue; }
if (Processed.Contains(Neighbor)) { continue; }
if (Neighbor->Distance(Start) > Radius) { continue; }
Frontier.Add(Neighbor);
Results.Add(Neighbor);
}
}
return Results;
}
/* // Faulty implementation which uses an actual PriorityQueue
TArray<AHexTile*> AAdventureMap::FindPathAStar(AHexTile* Start, AHexTile* Goal, bool bDiags)
{
TSet<AHexTile*> Processed;
TSet<AHexTile*> ToSearch;
TPriorityQueue<AHexTile*> Frontier;
Start->GCost = 0;
Frontier.Push(Start, .0f);
ToSearch.Add(Start);
while (!Frontier.IsEmpty()) {
AHexTile* Current = Frontier.Pop();
ToSearch.Remove(Current);
if (Current == Goal) { break; }
Processed.Add(Current);
for (AHexTile* Neighbor : Neighbors(Current, true)) {
if (Processed.Contains(Neighbor)) { continue; }
bool bInToSearch = ToSearch.Contains(Start);
int32 NewGCost = Current->GCost + Neighbor->MoveCost;
if (!bInToSearch || NewGCost < Neighbor->GCost) {
Neighbor->GCost = NewGCost;
Neighbor->CameFrom = Current;
if (!bInToSearch) {
Neighbor->HCost = Neighbor->Distance(Goal);
Frontier.Push(Neighbor, NewGCost + Neighbor->HCost);
ToSearch.Add(Neighbor);
}
}
}
}
TArray<AHexTile*> Path;
if (!IsValid(Goal->CameFrom)) { return Path; }
AHexTile* iPathNode = Goal;
while (iPathNode != Start) {
Path.Emplace(iPathNode);
iPathNode = iPathNode->CameFrom;
}
Algo::Reverse(Path);
return Path;
}
*/
TArray<AHexTile*> AAdventureMap::FindPathAStar(AHexTile * Start, AHexTile * Goal, bool bDiags)
{
TArray<AHexTile*> Frontier;
TSet<AHexTile*> Processed;
Frontier.Add(Start);
while (!Frontier.IsEmpty()) {
// Pop
AHexTile* Candidate = Frontier[0];
// Exit
if (Candidate == Goal) { break; }
// Find contender with an even lower F-cost
for (AHexTile* Other : Frontier) {
if (Other->FCost < Candidate->FCost
|| Other->FCost == Candidate->FCost && Other->HCost < Candidate->HCost)
{ Candidate = Other; }
}
Frontier.Remove(Candidate);
Processed.Add(Candidate);
// Expand frontier, make connections when appropriate
for (AHexTile* Neighbor : Neighbors(Candidate, true)) {
if (Processed.Contains(Neighbor)) { continue; }
bool bInFrontier = Frontier.Contains(Neighbor);
int32 NewGCost = Candidate->GCost + Neighbor->MoveCost;
if (NewGCost < Neighbor->GCost || !bInFrontier) {
Neighbor->GCost = NewGCost;
Neighbor->HCost = Neighbor->Distance(Goal);
Neighbor->FCost = Neighbor->GCost + Neighbor->HCost;
Neighbor->CameFrom = Candidate; // chain
if (!bInFrontier) {
Frontier.Add(Neighbor);
}
}
}
}
// Build and return path
TArray<AHexTile*> Path;
AHexTile* iPathNode = Goal;
while (iPathNode != Start) {
if (!IsValid(iPathNode->CameFrom) || !iPathNode->bFree) {
Path.Empty();
return Path;
}
Path.Emplace(iPathNode);
iPathNode = iPathNode->CameFrom;
}
Algo::Reverse(Path);
return Path;
}
// very bro-sciency approach to pathfinding for diagonal Hex-movement
// DO NOT USE
TArray<AHexTile*> AAdventureMap::ShortcutAStar(TArray<AHexTile*> Path)
{
TArray<AHexTile*> Shortcut;
int32 Len = Path.Num();
TArray<AHexTile*> WorkingSegment;
AHexTile* CurrentHex = PCRef->CurrentHex;
WorkingSegment.Add(CurrentHex);
int32 h = 0;
// create segments for each bend
FHexVector PrevDir = FHexVector(Path[0], CurrentHex);
FHexVector DirASave = PrevDir;
FHexVector DirA;
int32 HexesBeforeBend = 1;
for (h; h < Len-1; h++) {
WorkingSegment.Add(Path[h]);
DirA = FHexVector(Path[h+1], Path[h]);
if (DirA != PrevDir) { break; } // save Path[h] into Array of Bends
HexesBeforeBend++;
PrevDir = DirA;
}
PrevDir = DirA;
FHexVector DirB;
int32 HexesAfterBend = 0;
for (h; h < Len - 1; h++) {
WorkingSegment.Add(Path[h+1]);
DirB = FHexVector(Path[h+1], Path[h]);
if (DirB != PrevDir) { break; }
HexesAfterBend++;
PrevDir = DirB;
}
if (HexesAfterBend == 0)
{ return Path; }
FHexVector UnitDiag = UnitDiagFromUnitNB(DirASave, DirB);
AHexTile* Milestone = WorkingSegment.Last();
int32 NumDiags = (HexesBeforeBend >= HexesAfterBend) ? HexesAfterBend : HexesBeforeBend;
int32 NumTries = (HexesBeforeBend >= HexesAfterBend) ? HexesBeforeBend : HexesAfterBend;
bool bDiagAdded = false;
for (int i = 0; i < NumTries; i++) {
if (NumDiags == 0) {
Shortcut.Append(FindPathAStar(CurrentHex, Milestone, false));
break;
}
if (DiagIsReachable(CurrentHex, UnitDiag)) {
int32 CanIndex = GridIndex(CurrentHex->Q + UnitDiag.Q, CurrentHex->R + UnitDiag.R);
if (Grid.IsValidIndex(CanIndex)) {
AHexTile* Current = Grid[CanIndex];
if (Current->bFree) {
Shortcut.Add(Current);
bDiagAdded = true;
CurrentHex = Current;
NumDiags--;
continue;
} } }
if (!bDiagAdded && !DiagIsReachable(CurrentHex, UnitDiag)) {
Shortcut.Add(CurrentHex);
CurrentHex = WorkingSegment[i + 1];
NumDiags--;
continue;
}
if (bDiagAdded && !DiagIsReachable(CurrentHex, UnitDiag)) {
Shortcut.Append(FindPathAStar(CurrentHex, Milestone, true));
break;
}
}
if (Milestone != Path.Last()) { Shortcut.Append(FindPathAStar(Milestone, Path.Last(), true)); }
UE_LOG(LogTemp, Warning, TEXT("Hexes before bend: %d"), HexesBeforeBend);
UE_LOG(LogTemp, Warning, TEXT("Hexes after bend: %d"), HexesAfterBend);
return Shortcut;
}
FHexVector AAdventureMap::UnitDiagFromUnitNB(FHexVector InVecA, FHexVector InVecB) {
if (InVecA == NNW && InVecB == NNE||InVecB == NNW && InVecA == NNE) { return N; }
if (InVecA == NNE && InVecB == E ||InVecB == NNE && InVecA == E) { return ENE; }
if (InVecA == E && InVecB == SSE||InVecB == E && InVecA == SSE) { return ESE; }
if (InVecA == SSE && InVecB == SSW||InVecB == SSE && InVecA == SSW) { return S; }
if (InVecA == SSW && InVecB == W ||InVecB == SSW && InVecA == W) { return WSW; }
if (InVecA == W && InVecB == NNW||InVecB == W && InVecA == NNW) { return WNW; }
return FHexVector();
}
bool AAdventureMap::DiagIsReachable(AHexTile* InStart, FHexVector InDiagUnitVec) {
FHexVector BlockA;
FHexVector BlockB;
if (InDiagUnitVec == N) { BlockA = NNW, BlockB = NNE; }
if (InDiagUnitVec == ENE) { BlockA = NNE, BlockB = E; }
if (InDiagUnitVec == ESE) { BlockA = E, BlockB = SSE; }
if (InDiagUnitVec == S) { BlockA = SSE, BlockB = SSW; }
if (InDiagUnitVec == WSW) { BlockA = SSW, BlockB = W; }
if (InDiagUnitVec == WNW) { BlockA = W, BlockB = NNW; }
int32 IndexA = GridIndex(InStart->Q + BlockA.Q, InStart->R + BlockA.R);
int32 IndexB = GridIndex(InStart->Q + BlockB.Q, InStart->R + BlockB.R);
if (!Grid.IsValidIndex(IndexA) || !Grid.IsValidIndex(IndexB)) { return false; }
AHexTile* HexA = Grid[IndexA];
AHexTile* HexB = Grid[IndexB];
return (HexA->bFree && HexB->bFree);
}