generated from daniil-berg/boilerplate-py
made apply
non-blocking by using a meta-task
This commit is contained in:
@ -228,8 +228,6 @@ The only method of a pool that one should **always** assume to be blocking is :p
|
||||
|
||||
One method to be aware of is :py:meth:`.flush() <asyncio_taskpool.pool.BaseTaskPool.flush>`. Since it will await only those tasks that the pool considers **ended** or **cancelled**, the blocking can only come from any callbacks that were provided for either of those situations.
|
||||
|
||||
In general, the act of adding tasks to a pool is non-blocking, no matter which particular methods are used. The only notable exception is when a limit on the pool size has been set and there is "not enough room" to add a task. In this case, both :py:meth:`SimpleTaskPool.start() <asyncio_taskpool.pool.SimpleTaskPool.start>` and :py:meth:`TaskPool.apply() <asyncio_taskpool.pool.TaskPool.apply>` will block until the desired number of new tasks found room in the pool (either because other tasks have ended or because the pool size was increased).
|
||||
|
||||
:py:meth:`TaskPool.map() <asyncio_taskpool.pool.TaskPool.map>` (and its variants) will **never** block. Since it makes use of a "meta-task" under the hood, it will always return immediately. However, if the pool was full when it was called, there is **no guarantee** that even a single task has started, when the method returns.
|
||||
:py:meth:`TaskPool.map() <asyncio_taskpool.pool.TaskPool.map>` (and its variants) will **never** block. Since it makes use of a "meta-task" under the hood, it will always return immediately. However, if the pool was full when it was called, there is **no guarantee** that even a single task has started, when the method returns.
|
||||
In general, the act of adding tasks to a pool is non-blocking, no matter which particular methods are used. The only notable exception is when a limit on the pool size has been set and there is "not enough room" to add a task. In this case, :py:meth:`SimpleTaskPool.start() <asyncio_taskpool.pool.SimpleTaskPool.start>` will block until the desired number of new tasks found room in the pool (either because other tasks have ended or because the pool size was increased).
|
||||
|
||||
:py:meth:`TaskPool.apply() <asyncio_taskpool.pool.TaskPool.apply>` and :py:meth:`TaskPool.map() <asyncio_taskpool.pool.TaskPool.map>` (and its variants) will **never** block. Since they make use of "meta-tasks" under the hood, they will always return immediately. However, if the pool was full when one of them was called, there is **no guarantee** that even a single task has started, when the method returns.
|
||||
|
Reference in New Issue
Block a user