ff-performance-tests/go/feed_forward.go

138 lines
3.4 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

package main
import (
"encoding/csv"
"fmt"
"math"
"os"
"path/filepath"
"strconv"
"time"
"gonum.org/v1/gonum/mat"
)
const DATA_DIR string = "data"
type layer struct {
weights *mat.Dense
biases *mat.Dense
}
func array_flatten(two_d_array [][]string) []float64 {
var result []float64
for _, line := range two_d_array {
for _, value := range line {
float_value, _ := strconv.ParseFloat(value, 64)
result = append(result, float_value)
}
}
return result
}
func load_matrix_from_csv(file_path string) (*mat.Dense, error) {
f, err := os.Open(file_path)
if err != nil {
return nil, err
}
defer f.Close()
data, err := csv.NewReader(f).ReadAll()
return mat.NewDense(len(data), len(data[0]), array_flatten(data)), err
}
func load_test_data(dir string) (*mat.Dense, []layer, error) {
inputs, err := load_matrix_from_csv(filepath.Join(dir, "inputs.csv"))
if err != nil { return nil, nil, err }
var layers []layer
var weights *mat.Dense
var biases *mat.Dense
var path string
for n := 1; n < 100; n++ {
path = filepath.Join(dir, fmt.Sprintf("weights%02d.csv", n))
_, err = os.Stat(path)
if err != nil { break }
weights, err = load_matrix_from_csv(path)
if err != nil { return nil, nil, err }
path = filepath.Join(dir, fmt.Sprintf("biases%02d.csv", n))
_, err = os.Stat(path)
if err != nil { break }
biases, err = load_matrix_from_csv(path)
if err != nil { return nil, nil, err }
layers = append(layers, layer{weights, biases})
}
return inputs, layers, nil
}
func sigmoid_scalar(x float64) float64 {
return 1 / (1 + math.Exp(-x))
}
func sigmoid_element(i, j int, value float64) float64 {
return sigmoid_scalar(value)
}
func sigmoid_matrix(x mat.Matrix) *mat.Dense {
var y mat.Dense
y.Apply(sigmoid_element, x)
return &y
}
func layer_func(inputs *mat.Dense, weights *mat.Dense, biases *mat.Dense, activation func(x mat.Matrix) *mat.Dense) *mat.Dense {
var output mat.Dense
output.Mul(weights, inputs)
output.Add(&output, biases)
return sigmoid_matrix(&output)
}
func feed_forward(x *mat.Dense, layers []layer) *mat.Dense {
var y *mat.Dense = x
for _, l := range layers {
y = layer_func(y, l.weights, l.biases, sigmoid_matrix)
}
return y
}
func time_feed_forward(n int) {
inputs, layers, _ := load_test_data(DATA_DIR)
t0 := time.Now()
for i := 0; i < n; i++ { feed_forward(inputs, layers) }
elapsed := time.Since(t0)
fmt.Printf("%.5f\n", elapsed.Seconds())
}
func examples() {
x := mat.NewDense(2, 1, []float64{0, 2})
w1 := mat.NewDense(2, 2, []float64{1, 0, 2, 4})
b1 := mat.NewDense(2, 1, []float64{0, 1})
w2 := mat.NewDense(2, 2, []float64{1, 0, 2, 4})
b2 := mat.NewDense(2, 1, []float64{-0.5, 1})
layers := []layer{{w1, b1}, {w2, b2}}
pre := " "
fmt.Printf("x1 = %v\n", mat.Formatted(x, mat.Prefix(pre)))
fmt.Printf("w1 = %v\n", mat.Formatted(w1, mat.Prefix(pre)))
fmt.Printf("b1 = %v\n", mat.Formatted(b1, mat.Prefix(pre)))
fmt.Println("σ(w1 * x1 + b1) = ")
x2 := layer_func(x, w1, b1, sigmoid_matrix)
fmt.Printf("x2 = %v\n\n", mat.Formatted(x2, mat.Prefix(pre)))
fmt.Printf("w2 = %v\n", mat.Formatted(w2, mat.Prefix(pre)))
fmt.Printf("b2 = %v\n", mat.Formatted(b2, mat.Prefix(pre)))
fmt.Println("σ(w2 * x2 + b2) = ")
x3 := feed_forward(x, layers)
fmt.Printf("x3 = %v\n", mat.Formatted(x3, mat.Prefix(pre)))
}
func main() {
n, err := strconv.Atoi(os.Args[1])
if err != nil {
fmt.Println(err)
os.Exit(2)
}
time_feed_forward(n)
}