Generic schema with full typing support and minimal boilerplate
Go to file
2023-03-11 16:23:25 +01:00
docs 📝 Write and configure documentation 2023-03-11 16:23:25 +01:00
requirements Add isort and ruff as dev dependencies; 2023-03-11 16:23:25 +01:00
scripts Add isort and ruff as dev dependencies; 2023-03-11 16:23:25 +01:00
src/marshmallow_generic 📝 Write and configure documentation 2023-03-11 16:23:25 +01:00
tests Add loads method overloads to GenericSchema class 2023-03-11 16:23:25 +01:00
.gitignore 🎉 Initial commit 2023-03-11 16:23:21 +01:00
LICENSE 🎉 Initial commit 2023-03-11 16:23:21 +01:00
mkdocs.yaml 📝 Write and configure documentation 2023-03-11 16:23:25 +01:00
pyproject.toml 📝 Write and configure documentation 2023-03-11 16:23:25 +01:00
README.md 🎉 Initial commit 2023-03-11 16:23:21 +01:00

marshmallow-generic

Generic schema with full typing support and minimal boilerplate


Documentation: daniil-berg.github.io/marshmallow-generic

Source Code: github.com/daniil-berg/marshmallow-generic


Extension for marshmallow to make deserialization to objects easier and improve type safety.

The main GenericSchema class extends marshmallow.Schema making it generic in terms of the class that data should be deserialized to, when calling load/loads.

With GenericSchema there is no need to explicitly write post_load hooks to initialize the object anymore. 🎉

If the "model" class is (for example) User, it just needs to be passed as the type argument, when subclassing GenericSchema. Depending on whether many is True or not, the output of the load/loads method will then be automatically inferred as either User or list[User] by any competent type checker.

Usage Example

from marshmallow import fields
from marshmallow_generic import GenericSchema


class User:
    def __init__(self, name: str, email: str) -> None:
        self.name = name
        self.email = email

    def __repr__(self) -> str:
        return "<User(name={self.name!r})>".format(self=self)

...

class UserSchema(GenericSchema[User]):
    name = fields.Str()
    email = fields.Email()


user_data = {"name": "Monty", "email": "monty@python.org"}
schema = UserSchema()
single_user = schema.load(user_data)
print(single_user)  # <User(name='Monty')>

json_data = '''[
    {"name": "Monty", "email": "monty@python.org"},
    {"name": "Ronnie", "email": "ronnie@stones.com"}
]'''
multiple_users = schema.loads(json_data, many=True)
print(multiple_users)  # [<User(name='Monty')>, <User(name='Ronnie')>]

Adding reveal_type(single_user) and reveal_type(multiple_users) at the bottom and running that code through mypy would yield the following output:

# note: Revealed type is "User"
# note: Revealed type is "builtins.list[User]"

With the regular marshmallow.Schema, the output of mypy would instead be this:

# note: Revealed type is "Any"
# note: Revealed type is "Any"

This also means your IDE will be able to infer the types and thus provide useful auto-suggestions for the loaded objects. 👨‍💻

Here is PyCharm with the example from above:

Image title{ width="540" }

Installation

pip install marshmallow-generic

Dependencies

Python Version 3.9+ and marshmallow (duh)