unreal/AdventureMap.cpp

202 lines
5.5 KiB
C++

// Fill out your copyright notice in the Description page of Project Settings.
#include "AdventureMap.h"
#include "HexTile.h"
#include "AdventurePlayerController.h"
#include "Kismet/GameplayStatics.h"
#include "Algo/Reverse.h"
// Sets default values
AAdventureMap::AAdventureMap()
{
FHexVector NBs[] = { NNE, E, SSE, SSW, W, NNW };
NeighborUnitVectors.Append(NBs, UE_ARRAY_COUNT(NBs));
FHexVector DNBs[] = { N, ENE, ESE, S, WSW, WNW };
DiagonalUnitVectors.Append(DNBs, UE_ARRAY_COUNT(DNBs));
}
// Called when the game starts or when spawned
void AAdventureMap::BeginPlay()
{
Super::BeginPlay();
World = GetWorld();
if (IsValid(BaseTileClass)) {
MakeGrid();
}
}
// Called once on Begin Play
void AAdventureMap::MakeGrid()
{
FVector NextHexAt = FVector();
float HexWidth = sqrt(3) * TileSize;
int QOffset = 0;
for (int r = 1; r <= GridSize; r++) {
float XOffset = 0.f;
if (r % 2 != 0) { if (r > 1) { QOffset--; } }
else { XOffset = HexWidth / 2; }
for (int q = 1; q <= GridSize; q++) {
NextHexAt.X = XOffset + (HexWidth * q);
NextHexAt.Y = TileSize * 1.5f * r;
NextHexAt.Z = 0.f;
FTransform SpawnTransform = FTransform(NextHexAt);
AHexTile* Tile = World->SpawnActor<AHexTile>(BaseTileClass, SpawnTransform);
Grid.Add(Tile);
Tile->Q = q - 1 + QOffset;
Tile->R = r - 1;
}
}
for (auto& tile : Grid) {
tile->Index = GridIndex(tile->Q, tile->R);
}
bHexGridReady = true;
}
// Every Hex Tile's index within the Grid Array can be derived from its Axial Q and R coordinates
int32 AAdventureMap::GridIndex(int32 qAxial, int32 rAxial)
{
/*
* The Q axis is (i.e. columns are) oriented diagonally.
* The Hex Grid has a rough square shape, hence the Q coordinates must be offset by -1 every other row.
*/
int32 column = qAxial + FMath::FloorToInt(rAxial / 2);
return (rAxial * GridSize) + column;
}
AHexTile* AAdventureMap::RandomHex()
{
int32 RandHex = FMath::RandRange(0, GridSize*GridSize-1);
return Grid[RandHex];
}
TArray<AHexTile*> AAdventureMap::Neighbors(AHexTile* OfHex, bool bFreeOnly = false)
{
TArray<AHexTile*> Results;
for (auto& V : NeighborUnitVectors) {
int32 I = GridIndex(OfHex->Q + V.Q, OfHex->R + V.R);
if (Grid.IsValidIndex(I)) {
AHexTile* H = Grid[I];
if (bFreeOnly && !H->bFree) { continue; }
if (H->Distance(OfHex) == 1) { Results.Add(H); }
}
}
return Results;
}
TArray<AHexTile*> AAdventureMap::FreeDiagonals(AHexTile* OfHex)
{
TArray<AHexTile*> Results;
for (auto& V : DiagonalUnitVectors) {
int32 I = GridIndex(OfHex->Q + V.Q, OfHex->R + V.R);
if (!Grid.IsValidIndex(I)) { continue; }
else {
bool bReachable = true;
for (AHexTile* PotentialBlock : Neighbors(OfHex)) {
if (PotentialBlock->Distance(Grid[I]) != 1) { continue; }
if (!PotentialBlock->bFree) {
bReachable = false;
break;
}
}
if (bReachable) { Results.Add(Grid[I]); }
}
}
return Results;
}
TSet<AHexTile*> AAdventureMap::BreadthFirstSearch(AHexTile* Start, int32 Radius)
{
TSet<AHexTile*> Results;
TArray<AHexTile*> ToExamine;
TSet<AHexTile*> Processed;
Results.Add(Start);
ToExamine.Add(Start);
while (!ToExamine.IsEmpty()) {
AHexTile* Candidate = ToExamine[0];
Processed.Add(Candidate);
ToExamine.Remove(Candidate);
for (AHexTile* Neighbor : Neighbors(Candidate)) {
if (Neighbor->Distance(Candidate) > 1) { continue; }
if (Processed.Contains(Neighbor)) { continue; }
if (Neighbor->Distance(Start) > Radius) { continue; }
ToExamine.Add(Neighbor);
Results.Add(Neighbor);
}
}
return Results;
}
TArray<AHexTile*> AAdventureMap::FindPathAStar(AHexTile* Start, AHexTile* Goal, bool bDiags)
{
TArray<AHexTile*> ToExamine;
TSet<AHexTile*> Processed;
ToExamine.Add(Start);
while (!ToExamine.IsEmpty()) {
AHexTile* Candidate = ToExamine[0];
ToExamine.Remove(Candidate);
// try for Hex with lower estimatet (F)cost
for (AHexTile* t : ToExamine) {
t->FCost = t->GCost + t->HCost;
if (t->FCost < Candidate->FCost || t->FCost == Candidate->FCost && t->HCost < Candidate->HCost) { Candidate = t; }
}
Processed.Add(Candidate);
// exit
if (Candidate == Goal) { break; }
// expand frontier & adjust path data
for (AHexTile* Neighbor : Neighbors(Candidate, true)) {
if (Neighbor->Distance(Candidate) > 1) { continue; }
if (!Neighbor->bFree) { continue; }
if (Processed.Contains(Neighbor)) { continue; }
bool bInToExamine = ToExamine.Contains(Neighbor);
float NewGCost = Candidate->GCost + Neighbor->MoveCost * 10.f;
if (NewGCost < Neighbor->GCost || !bInToExamine) {
Neighbor->GCost = NewGCost;
Neighbor->CameFrom = Candidate; // chain
if (!bInToExamine) {
Neighbor->HCost = Neighbor->Distance(Goal) * 10.f;
ToExamine.Add(Neighbor);
} }
}
if (bDiags) {
for (AHexTile* Diag : FreeDiagonals(Candidate)) {
if (Diag->Distance(Candidate) > 2) { continue; }
if (!Diag->bFree) { continue; }
if (Processed.Contains(Diag)) { continue; }
bool bInToExamine = ToExamine.Contains(Diag);
float NewGCost = Candidate->GCost + 1 + Diag->MoveCost * 10.f;
if (NewGCost < Diag->GCost || !bInToExamine) {
Diag->GCost = NewGCost;
Diag->CameFrom = Candidate; // chain
if (!bInToExamine) {
Diag->HCost = Diag->Distance(Goal) * 10.f; // not accounting for diagonals
ToExamine.Add(Diag);
} }
}
}
}
TArray<AHexTile*> Path;
if (!IsValid(Goal->CameFrom)) { return Path; }
AHexTile* iPathNode = Goal;
while (iPathNode != Start) {
Path.Emplace(iPathNode);
iPathNode = iPathNode->CameFrom;
}
Algo::Reverse(Path);
return Path;
}